Tuesday 16 February 2016

Up to date info on CPU governors

No comments
https://lh3.ggpht.com/c6NxCJkd7eaX_GigbeAGrNMFlMDAkbIZsInolYtEcjOpUXjMQvc0M1OCecUFEyjNKWo=w300

What is a CPU governor?

A CPU governor in Android controls how the CPU raises and lowers its frequency in response to the demands the user is placing on their device. Governors are especially important in smartphones and tablets because they have a large impact on the apparent fluidity of the interface and the battery life of the device over a charge.


Things to look out for in a CPU governor:

There are many CPU governors available on android, but there are some important things people should look out for before selecting their new governor:

- Speed - The more the better!!!! Usually having lots of speed equates to lower battery life, so it is best to balance this out.
- Battery life - More of this means more battery life!!! Being very battery friendly usually means less speed (or sometimes smoothness), so it's best to balance this out.
- Stability - Some governors are plain unstable and some are rock solid. Of course people would want a stable CPU governor!!!
- Smoothness (or Fluidity) - This is not the same as speed, a governor can be fast but it doesn't mean it is smooth. A way to test this is to scroll down/up pages or open and close apps. Of course, more smoothness = awesome phone experience



1: OnDemand:

Ondemand is one of the original and oldest governors available on the linux kernel. When the load placed on your CPU reaches the set threshold, the governor will quickly ramp up to the maximum CPU frequency. It has excellent fluidity because of this high-frequency bias, but it can also have a relatively negative effect on battery life versus other governors. OnDemand was commonly chosen by smartphone manufacturers in the past because it is well-tested and reliable, but it is outdated now and is being replaced by Google's Interactive governor.


2: OndemandX:

Basically an ondemand with suspend/wake profiles. No further optimization was done to Ondemand to keep it close to source as possible.


3: Performance:

The performance governor locks the phone's CPU at maximum frequency.


4: Powersave:

The opposite of the Performance governor, the Powersave governor locks the CPU frequency at the lowest frequency set by the user.


5: Conservative:

This governor biases the phone to prefer the lowest possible clockspeed as often as possible. In other words, a larger and more persistent load must be placed on the CPU before the conservative governor will be prompted to raise the CPU clockspeed. Depending on how the developer has implemented this governor, and the minimum clockspeed chosen by the user, the conservative governor can introduce choppy performance. On the other hand, it can be good for battery life.

The Conservative Governor is also frequently described as a "slow OnDemand". The original and unmodified conservative is slow and inefficient. Newer and modified versions of conservative (from some kernels) are much more responsive and are better all around for almost any use.


6: Userspace:

This governor, exceptionally rare for the world of mobile devices, allows any program executed by the user to set the CPU's operating frequency. This governor is more common amongst servers or desktop PCs where an application (like a power profile app) needs privileges to set the CPU clockspeed.


7: Min Max

Min Max is a governor that makes use of only min & maximum frequency based on workload... no intermediate frequencies are used!


8: Interactive:

Interactive scales the clockspeed over the course of a timer set by the kernel developer (or user). In other words, if an application demands a ramp to maximum clockspeed (by placing 100% load on the CPU), a user can execute another task before the governor starts reducing CPU frequency. Because of this timer, Interactive is also better prepared to utilize intermediate clockspeeds that fall between the minimum and maximum CPU frequencies. It is significantly more responsive than OnDemand, because it's faster at scaling to maximum frequency.

Interactive also makes the assumption that a user turning the screen on will shortly be followed by the user interacting with some application on their device. Because of this, screen on triggers a ramp to maximum clockspeed, followed by the timer behavior described above.

Interactive is the default governor of choice for today's smartphone and tablet manufacturers.

9: InteractiveX:

Created by kernel developer "Imoseyon," the InteractiveX governor is based heavily on the Interactive governor, enhanced with tuned timer parameters to better balance battery vs. performance. The InteractiveX governor's defining feature, however, is that it locks the CPU frequency to the user's lowest defined speed when the screen is off.


10: Smartass

Based on interactive, performance is on par with the “old” minmax and smartass is a bit more responsive. Battery life is hard to quantify precisely but it does spend much more time at the lower frequencies.
Smartass will also cap the max frequency when sleeping to 352Mhz (or if your min frequency is higher than 352 it will cap it to your min frequency).

This governor will slowly ramp down frequency when the screen is off and it could also let the frequency go to low making your phone unusable (if min frequency is not checked).

11: SmartassV2:

Version 2 of the original smartass governor from Erasmux. The governor aim for an "ideal frequency", and ramp up more aggressively towards this freq and less aggressive after. It uses different ideal frequencies for screen on and screen off, namely awake_ideal_freq and sleep_ideal_freq. This governor scales down CPU very fast (to hit sleep_ideal_freq soon) while screen is off and scales up rapidly to awake_ideal_freq when screen is on. There's no upper limit for frequency while screen is off (unlike Smartass). So the entire frequency range is available for the governor to use during screen-on and screen-off state. The motto of this governor is a balance between performance and battery.

12: Scary

A new governor wrote based on conservative with some smartass features, it scales accordingly to conservatives laws. So it will start from the bottom, take a load sample, if it's above the upthreshold, ramp up only one speed at a time, and ramp down one at a time. It will automatically cap the off screen speeds to whatever the kernel developer sets it too and will still scale accordingly to conservatives laws. So it spends most of its time at lower frequencies. The goal of this is to get the best battery life with decent performance.


13: Lagfree:

Lagfree is similar to ondemand. Main difference is it's optimization to become more battery friendly. Frequency is gracefully decreased and increased, unlike ondemand which jumps to 100% too often. Lagfree does not skip any frequency step while scaling up or down. Remember that if there's a requirement for sudden burst of power, lagfree can not satisfy that since it has to raise cpu through each higher frequency step from current. Some users report that video playback using lagfree stutters a little.


14: Smoothass:

The same as the Smartass “governor” But MUCH more aggressive & across the board.


15: Brazilianwax:

Similar to smartassV2. More aggressive ramping, so more performance, less battery


16: SavagedZen:

Another smartassV2 based governor. Achieves good balance between performance & battery as compared to brazilianwax.


17: Lazy:

This governor from Ezekeel is basically an ondemand with an additional parameter min_time_state to specify the minimum time CPU stays on a frequency before scaling up/down. The Idea here is to eliminate any instabilities caused by fast frequency switching by ondemand. Lazy governor polls more often than ondemand, but changes frequency only after completing min_time_state on a step overriding sampling interval. Lazy also has a screenoff_maxfreq parameter which when enabled will cause the governor to always select the maximum frequency while the screen is off.


18: Lionheart:

Lionheart is a conservative-based governor which is based on samsung's update3 source.
The tunables (such as the thresholds and sampling rate) were changed so the governor behaves more like the performance one, at the cost of battery as the scaling is very aggressive.


19: LionheartX

LionheartX is based on Lionheart but has a few changes on the tunables and features a suspend profile based on Smartass governor.


20: Intellidemand:

Intellidemand aka Intelligent Ondemand from Faux is yet another governor that's based on ondemand. The original intellidemand behaves differently according to GPU usage. When GPU is really busy (gaming, maps, benchmarking, etc) intellidemand behaves like ondemand. When GPU is 'idling' (or moderately busy), intellidemand limits max frequency to a step depending on frequencies available in your device/kernel for saving battery. This is called browsing mode.

To sum up, this is an intelligent ondemand that enters browsing mode to limit max frequency when GPU is idling, and (exits browsing mode) by behaving like ondemand when GPU is busy; to deliver performance for gaming and such. Intellidemand does not jump to highest frequency when screen is off. Faux no longer recommends intellidemand and believes that intellidemand users should switch to intelliactive for better optimizations and performance.


21: Hotplug:

The Hotplug governor performs very similarly to the OnDemand governor, with the added benefit of being more precise about how it steps down through the kernel's frequency table as the governor measures the user's CPU load. However, the Hotplug governor's defining feature is its ability to turn unused CPU cores off during periods of low CPU utilization. This is known as "hotplugging."

22: BadAss:

Badass removes all of this "fast peaking" to the max frequency. To trigger a frequency increase, the system must run a bit with high load, then the frequency is bumped. If that is still not enough the governor gives you full throttle. (this transition should not take longer than 1-2 seconds, depending on the load your system is experiencing)
Badass will also take the gpu load into consideration. If the gpu is moderately busy it will bypass the above check and clock the cpu to max frequency, If the gpu is crushed under load, badass will lift the restrictions to the cpu.

23: Wheatley:

Building on the classic 'ondemand' governor is implemented Wheatley governor. The governor has two additional parameters. Wheatley works as planned and does not hinder the proper C4 usage for task where the C4 can be used properly. So the results show that Wheatley works as intended and ensures that the C4 state is used whenever the task allows a proper efficient usage of the C4 state. For more demanding tasks which cause a large number of wakeups and prevent the efficient usage of the C4 state, the governor resorts to the next best power saving mechanism and scales down the frequency. So with the new highly-flexible Wheatley governor one can have the best of both worlds.

Wheatley is a more performance orientated governor as it scales more aggressively than ondemand and sticks with higher frequencies.

24:Lulzactive\LulzactiveQ:

It's based on Interactive & Smartass governors.

Old Version: When workload is greater than or equal to 60%, the governor scales up CPU to next higher step. When workload is less than 60%, governor scales down CPU to next lower step. When screen is off, frequency is locked to global scaling minimum frequency.

New Version: Three more user configurable parameters: inc_cpu_load, pump_up_step, pump_down_step. Unlike older version, this one gives more control for the user. We can set the threshold at which governor decides to scale up/down. We can also set number of frequency steps to be skipped while polling up and down.
When workload greater than or equal to inc_cpu_load, governor scales CPU pump_up_step steps up. When workload is less than inc_cpu_load, governor scales CPU down pump_down_step steps down.

25: Pegasusq/Pegasusd

The Pegasus-q / d is a multi-core based on the Ondemand governor and governor with integrated hot-plugging. It is quite stable and has the same battery life as ondemand). Ongoing processes in the queue, we know that multiple processes can run simultaneously on. These processes are active in an array, which is a field called "Run Queue" queue that is ongoing, with their priority values ​​arranged (priority will be used by the task scheduler, which then decides which process to run next).

To ensure that each process has its fair share of resources, each will run for a certain period and will eventually stop and then again placed in the queue until it is your turn again. If a program is terminated, so that others can run the program with the highest priority in the current queue is executed.

26: Hotplugx

It's a modified version of Hotplug and optimized for the suspension in off-screen

27: AbyssPlug

It's a Governor derived from hotplug, it works the same way, but with the changes in savings for more battery life.

28: MSM DCVS

A very efficient and wide range of Dynamic Clock and Voltage Scaling (DCVS) which addresses usage models from active standby to mid and high level processing requirements. It makes the phone's CPU smoothly scale from low power, from low leakage mode to blazingly fast performance.Only to be used by Qualcomm CPUs.

MSM is the prefix for the SOC (MSM8960) and DCVS is Dynamic Clock and Voltage Scaling. Makes sense, MSM-DCVS

29: IntelliActive

Based off Google's Interactive governor with the following enhancements:

1. self-boost capability from input drivers (no need for PowerHAL assist)
2. two phase scheduling (idle/busy phases to prevent from jumping directly to max freq
3. Checks for offline cpus and short circuits some unnecessary checks to improve code execution paths. Therefore, it avoids CPU hotplugging.

Created by Faux

30: Adaptive

This driver adds a dynamic cpufreq policy governor designed for latency-sensitive workloads and also for demanding performance.

This governor attempts to reduce the latency of clock so that the system is more responsive to interactive workloads in lowest steady-state but to reduce power consumption in middle operation level, level up will be done in step by step to prohibit system from going to
max operation level.

31:Nightmare

A PegasusQ modified, less aggressive and more stable. A good compromise between performance and battery. In addition to the SoD is a prevention because it usually does not hotplug.

32: ZZmoove

The ZZmoove Governor by ZaneZam is optimized for low power consumption when the screen off, with particular attention to the limitation of consumption applications in the background with the screen off, such as listening to music. The unique feature with ZZmoove is that it has predefined profiles and allows profile switching. This governor is still a WIP as the developer is constantly giving updates! Here are the available profiles:


Quote:
1) for Default (set governor defaults)
2) for Yank Battery -> old untouched setting (a very good battery/performance balanced setting DEV-NOTE: highly recommended!)
3) for Yank Battery Extreme -> old untouched setting (like yank battery but focus on battery saving)
4) for ZaneZam Battery -> old untouched setting (a more 'harsh' setting strictly focused on battery saving DEV-NOTE: might give some lags!)
5) for ZaneZam Battery Plus -> NEW! reworked 'faster' battery setting (DEV-NOTE: recommended too! )
6) for ZaneZam Optimized -> old untouched setting (balanced setting with no focus in any direction DEV-NOTE: relict from back in the days, even though some people still like it!)
7) for ZaneZam Moderate -> NEW! setting based on 'zzopt' which has mainly (but not strictly only!) 2 cores online
8) for ZaneZam Performance -> old untouched setting (all you can get from zzmoove in terms of performance but still has the fast down scaling/hotplugging behaving)
9) for ZaneZam InZane -> NEW! based on performance with new auto fast scaling active. a new experience!
10) for ZaneZam Gaming -> NEW! based on performance with new scaling block enabled to avoid cpu overheating during gameplay
11) for ZaneZam Relax -> NEW! based on moderate (except hotplug settings) with relaxed sleep settings
(since version 0.9 beta4: cpu temperature threshold of 65°C enabled if exynos4 cpu temperature reading support was compiled with the governor)
33: Sleepy

The Sleepy (formerly known as Solo) is an attempt to strike a balance between performance and battery power to create. It is based on Ondemand. It includes some tweaks like the Down_sampling variable and other features that set by the user through the sysfs of "echo" call. Sleepy is quite similar to Ondemandx.

34: Hyper

The Hyper (formerly known as kenobi) is an aggressive smart and smooth governor based on the Ondemand and is equipped with several features of Ondemandx suspend profiles. It also has the fast_start deep_sleep variable and detection features. In addition, the maximum frequency is in suspend mode 500Mhz or whatever the kernel developer sets it to. This is a more smoothness oriented governor which means that it is good for performance, without sacrificing much battery life.

35: SmartassH3

The SmartassH3 governor is designed for battery saving and not pushing the phones performance, since doing that drains battery and that's the one thing people keep asking for more of. Based on SmartassV2.

36: SLP

It is a mix of pegasusq and ondemand. Therefore, it has a balance between battery savings and performance.

37: NeoX

An optimized version of the pegasusq governor but with some extra tweaks for better performance. This means slightly more battery drainage than the original PegasusQ but it is still a balanced governor.

38. ZZmanx

ZZmanx is exactly the same as ZZmoove, but it has been renamed because DorimanX made it into his own version (possibly better performance) . However, it still suffers from below average gaming performance. (Refer to ZZmoove description for guide on profiles)

39. OnDemandPlus

Ondemandplus is an ondemand and interactive-based governor that has additional power-saving capabilities while maintaining very snappy performance. While the interactive governor provides a modern and sleek framework, the scaling logic has been been re-written completely. Reports have found that users find ondemandplus as a more battery friendly governor. In ondemandplus, the downscaling behavior from ondemand is only very slightly modified. However, the upscaling has been modified to not scale up to maximum frequency immediately.

40. Dynamic Interactive (DynInteractive)

This governor dynamically adjusts itself according to load. That means it's settings are dynamic (always changing) and not static (not changing). Dyninteractive still obtains the same great balance between battery life and performance found in the original interactive governor and improves it even further. This is not the same as the original interactive governor because of this unique behavior.

41. Smartmax

Smartmax is a mix between ondemand and smartassv2. It behaves mostly like smartass with the concept of an "ideal" frequency. By default this is configured for battery saving, so this is NOT a gaming or benchmark governor! Additionally, to make it "snappy", smartmax has "touch poke". So input events from the touchscreen will boost the cpu for a specific time to a specific frequency. Developed by XDA user Maxwen.

42. Ktoonservative\KtoonservativeQ

A combination of ondemand and conservative. Ktoonservative contains a hotplugging variable which determines when the second core comes online. The governor shuts the core off when it returns to the second lowest frequency thus giving us a handle on the second performance factor in our CPUs behavior.

43. Performance may cry (PMC)

A governor based on Smartmax except it's heavily tweaked for better and maximum battery life. This is not a gaming governor!

44. Dance Dance

Based on conservative with some smartass features, it scales accordingly to conservatives laws. So it will start from the bottom, take a load sample, if it's above the upthreshold, ramp up only one speed at a time, and ramp down one at a time. It will automatically cap the off screen speeds to 245Mhz, and if your min freq is higher than 245mhz, it will reset the min to 120mhz while screen is off and restore it upon screen awakening, and still scale accordingly to conservatives laws. So it spends most of its time at lower frequencies. The goal of this is to get the best battery life with decent performance. It is a performance focused governor but also blends with some battery savings.

45. AbyssPlugv2

AbyssPlugv2 is a rewrite of the original CPU governor. It also fixes the problem where the governor is set only for the first core, but now governs all cores right from whatever utility you use. There have been comments on the lack of stability with this governor.

46. IntelliMM

A rewrite of the old Min Max governor and has 3 cpu states: Idle, UI and Max. Intelliminmax (intellimm) governor is designed to work with the newer SOCs with fixed voltage rails (ie MSM8974+ SOCs). It is designed to work within those fixed voltage ranges in order to maximize battery performance while creating a smooth UI operations. It is battery friendly and spends most of the time at lower frequencies.

47. Interactive Pro

A newer (modified) version of interactive which is optimized for devices such as the One Plus One. It is a more efficient than the original Interactive because it continuously re-evaluates the load of each CPU therefore allowing the CPU to scale efficiently.

48. Slim

A new governor from the cm branch and the slimrom project. This is a performance optimized governor and has been tuned a lot for newer devices such as the One Plus One.

49. Ondemand EPS

A modified version of Ondemand and is optimized for newer devices. It is based on the Semaphore Kernel's Ondemand which is more optimized for battery life. The EPS at the end stands for Extreme power savings so this governor is biased to power savings!

50. Smartmax EPS

This governor is based on Smartmax but is optimized for 'Extreme Power Saving' (hence the EPS suffix). This means it uses less battery than the original Smartmax so it is not a very good gaming governor (again!) This is only found on newer devices.

51. Uberdemand

Uberdemand is Ondemand with 2-phase feature meaning it has a soft cap at 1728 MHz so your cpu won't always go directly to max, made by Chet Kener.

52. Yankactive

A slightly modified interactive based governor by Yank555.lu. It has battery tweaks added onto it so expect better battery life! Based on user reports, this governor behaves more battery friendly than the original interactive governor without sacrificing performance.

53. Impulse

An improved version of interactive modified by neobuddy89. Impulse aims to have a balance between battery and performance just like interactive but has some tweaks to save battery.

54. Bacon

This is nothing but polished interactive governor branded as "bacon" since it was adapted from bacon device thanks to neobuddy89. Most of the tweaks are for performance/latency improvements

55. Optimax governor

This is based on ONDEMAND, like almost all governors that have arisen from XDA. It contains some enhancements from LG, particularly to freq boost handling so it will boost to a set level, almost like HTC's governor. It has different tunables to the HTC governor but it behaves pretty similar, the tunables it comes with default are a bit more conservative.
It originates from Cl3kener's Uber kernel for Nexus 5, where it has quite a reputation for battery life

56. Preservative governor

This is based on the idea that the CPU will consume a lot of power when it changes frequency. It is based on the conservative governor. The idea is that it will stay at the step specified (702MHz selected by the creator Bedalus) unless needed. You will notice it will hover around 702 a lot, and not go above too much, and only to min freq when NOTHING is happening at all. This is most beneficial when you are doing something like reading; the screen is static or playing light games that won't need boosting any more
The governor comes from Moob kernel for nexus 4

57. Touchdemand

Touchdemand is based on the ondemand cpu governor but has been modified for the Tegra 3 chip (tablet only) and has additional tweaks for touchscreen responsiveness.

58. ElementalX

The ElementalX CPU governor has been specifically designed and tuned to get the best balance between battery life and performance. By default, it is more conservative than Ondemand. During routine usage, the CPU frequency does not ramp up very often. If gboost is enabled, during gaming or any other graphics intensive situation, the CPU frequencies boost much easier in order to maintain maximum performance. There is also a built in input boost.

59. Bioshock

Not the game, but rather the CPU governor developed by Jamison904. A mix of ConservativeX and Lionheart. Good balance between battery savings and performance.

60. Blu_active

A new cpu governor developed by eng.stk (featured in his Code_Blue kernels) based on interactive with upstream caf patches and ondemand governor bits too. This governor is mainly focused on performance like the other things the developer creates but it is also well balanced for gaming and general usage.

61. Umbrella_core

A new cpu governor by twisedumbrella based on interactive that is focused on battery life and not performance. It will still ramp up to a set frequency but will not stay at high frequencies for long. This governor tends to stay in high-mid range frequencies during screen_off.

62. ConservativeX

Also developed by Imoseyon (feat. briefly in the Lean Kernel for Galaxy Nexus), the ConservativeX governor behaves like the Conservative governor with the added benefit of locking the CPU frequency to the lowest interval when the screen is off. This governor may additionally perform hotplugging on CPU1, but there is no documentation to confirm that suspicion at this time.

63. HydrxQ

Simply a lulzactiveq governor with tweaks to performance (thanks to tegrak). This means more performance and less battery life.

64. DevilQ

An aggressive pegasusq governor which keeps the hotplugging at max 2 cpu cores to offline). This is pretty much a more optimized pegasusq for phone's with quad core processors.

65. YankasusQ

Yankasusq is another modified pegasusq but with including screen off freq tunable and some other modifications as well. The difference between PegasusQ and YanksusQ is that it doesn't ramp too aggressively when screen turns on (less battery drainage).

66. Darkness

It's based on nightmare but more simple and fast, basic configs but very complex structure. It is an updated nightmare gov and improved stability, so far it is quite stable in tests

67. Alucard

A favourite choice and one of the original governors that Alucard_24 made. Alucard is based on ondemand but has been heavily tweaked to bring better battery life and performance. It has been known to be battery friendly without sacrificing much performance.

68. Hellsactive

A heavily modified intelliactive governor by @hellsgod that has been tweaked to improve battery life. Hellsactive is less aggressive compared to intelliactive so the battery life will be more like the original interactive.

69. Ragingmolasses

Besides a gov with an awesome name its a mash up of conservative and ondemand and scales based on load with few tunables. Its meant to be simple, fast, and efficient at keeping the frequency away from the max clock unless it is absolutely needed. it includes gboost for better gaming.

70. Virtuous

It sets your max cpu for wake and sleep and changes the governor when your device is awake or asleep. It saves battery by lowering cpu frequencies while the device sleeps, when it awakes it automatically speeds it up again. Or alternately you can set the cpu.It is based on smartassV2(It uses 2 governors, one for sleep and other for awake)

71. Sakuractive

An aggressive hybrid of ondemand and hotplug, which means it will scale like ondemand, except a little more aggressive. But also acts like hotplug as it shuts down multiple CPU cores to save power.

72. InteractiveX V2

Also developed by Imoseyon (feat. in the Lean Kernel for Galaxy Nexus), the InteractiveX V2 governor behaves like InteractiveX, and additionally forces CPU1 into a hotplug state when the screen is off.

73. Alessa

A less aggressive and more stable ondemand modified by TeamMex. A good compromise between performance and battery. It can be used with the complementary hotplug governor. Please note that this governor is still a WIP!

74. GallimaufryX

A modded ondemand that is a 2-stage ondemand governor with speed tweaks. It includes imoseyon's screen-off hotplugging code.

75. AggressiveX

A modded conservative governor but with lots of tweaks to increase snappiness while saving power. It also includes imoseyon's screen-off hotplugging code.

76. Tripndroid

Instead of the I/O scheduler, this is a CPU governor based on ondemand with extra tweaks for performance

77. Wrexy

Wrexy is a conservative based governor. Its similiar to the Lionheart gov. It tends to stay out of higher frequencies to favor lower frequencies but performance is not much affected.

78. Xperience

A tweaked smartassv2 for better performance. Created by TeamMex.

79. Stockdemand

A heavily modified ondemand for better performance and battery life. It is still a well balanced governor and it is designed for everyday use.

80. Zeneractive

This new "zeneractive" governor is based on interactive. It handles frequency scaling the exact same as interactive and has the same tunables as interactive for frequency scaling. However, on zeneractive all of the new hotplugging code that's in there is "from scratch."

81. InteractiveB

An interactive based governor with a more balance battery life/performance profile

82. Aggressive

Like Lionheart, it is based on conservative, but even more aggressive

83. Intellidemandv2

Much like its predecessor, intellidemandv2 is an intelligent ondemand with browsing detection and scales based on GPU loading. It has been optimized for specific devices and has better battery life and performance.

84. Boostactive

Based on Interactive but with cpu frequency boosting capabilities. This is performance oriented governor.

85. Wave

Based on Conservative with some tweaks for speed and battery. This governor was created by zparallax.

86. Barry-Allen

It's based on interactive. The governor is supposed to be more battery friendly and at the same have good performance.

87. Arteractive

It is an interactive CPU governor port from newer source code. It has more optimizations for Snapdragon 80x processors.

88. Precognition (PrecoGOV)

PrecoGOV takes over and dynamically adapts to your usage pattern. To achieve such goal, PrecoGOV manages the frequency, idle & sleep patterns, hotplugging, temperature per core and even gpu and tries to help the scheduler as best as it can, all while taking into account battery and thermal constraints.

89. Mythx_plug

It's based on an improved Interactive governor and has been modified to scale up slower and scale down faster. It is a battery friendly governor.

90. PegasusQPlus

PegasusQPlus is a heavily tweaked PegasusQ governor, which has been implemented by AndreiLux in his Perseus kernel. PegasusQPlus should have a better balance between performance and battery usage.

91. Yankdemand

Full stock (JB) ondemand governor with changed default tunable values aimed at lower battery consumption

92. HyperX

A tweaked interactive based governor for performance.

93. Despair

It is a tweaked conservative governor with a couple extra values exposed, it tends to be a bit more conservative with battery than the conservative governor by default. Developed by DespairFactor.

94. Electroactive

The Electroactive CPU governor has been created to get some of the best balances between battery life and performance that you will see on a device. This governor is the replacement over the original electrodemand governor, being much more battery friendly with much smoother transitions compared to the original. It is a hybrid class governor, using a unique way to merge the best of both interactive and ondemand. It includes some extra additions and enhancements to be more battery saving than interactive governor and some boost tunes and additions that allow better power management and performance in games as well as better power saving when in normal use. CPU boost, graphics boost, fast_start deep_sleep and detection features are built in as well as 300 MHz clock speed in suspend.

95. Electrodemand

Based on the ondemand cpu governor, this is the older governor that was used in the electroactive kernel which uses the same tunables found in the original ondemand governor.

96. Lionfish

The Lionfish governor combines traits of the conservative, ondemand, and interactive governors. It is designed to maximize battery life without noticeably impacting performance. It responds quickly to heavy loads (similar to ondemand and interactive) while staying within the region of optimal CPU performance per watt. With moderate loads, it periodically votes to raise, maintain, or decrease the frequency. When there are enough votes to change the frequency, it is ramped up and down gradually. The voting mechanism reduces frequency jitter compared to ondemand and conservative. squid2's testing had found that this governor uses moderate frequencies (where efficiency is optimal) more effectively than interactive, ondemand, and conservative. This improved frequency distribution results in a moderate reduction in CPU power consumption while maintaining responsiveness comparable to the interactive governor.
 

No comments :

Post a Comment

Powered by Blogger.